From 8e612b573e8111b738761163a47cf7885935880d Mon Sep 17 00:00:00 2001 From: =?utf8?q?Anders=20M=C3=B6rtberg?= Date: Wed, 14 Jun 2017 14:52:27 +0200 Subject: [PATCH] update README --- lectures/README.md | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/lectures/README.md b/lectures/README.md index f4a210b..5bdabbd 100644 --- a/lectures/README.md +++ b/lectures/README.md @@ -10,24 +10,24 @@ assumed. The contents of the lectures are: -* **lecture1.ctt** -..Basic features of the base type theory -..A little bit of Path types (Path abstraction and application) +1. **lecture1.ctt** +* Basic features of the base type theory +* A little bit of Path types (Path abstraction and application) -* **lecture2.ctt** -..More on Path types (symmetry and connections) -..Compositions +2. **lecture2.ctt** +* More on Path types (symmetry and connections) +* Compositions -* **lecture3.ctt** -..Higher dimensional compositions -..Transport and J for Path types -..Fill -..H-levels (contractible types, propositions, sets, groupoids...) +3. **lecture3.ctt** +* Higher dimensional compositions +* Transport and J for Path types +* Fill +* H-levels (contractible types, propositions, sets, groupoids...) -* **lecture4.ctt** -..Equivalences -..Glue types -..Proofs of the univalence axiom +4. **lecture4.ctt** +* Equivalences +* Glue types +* Proofs of the univalence axiom The lectures hence give a hands-on introduction covering sections 2-7 of the [paper](https://arxiv.org/abs/1611.02108). \ No newline at end of file -- 2.34.1