From: coquand Date: Sun, 19 Apr 2015 10:12:08 +0000 (+0200) Subject: result on equivalence of fibers X-Git-Url: https://git.ak3n.com/?a=commitdiff_plain;h=5160fdd739a6ee0b6cf56f3ec6b44c89b0e8d99f;p=cubicaltt.git result on equivalence of fibers --- diff --git a/examples/equiv.ctt b/examples/equiv.ctt index 321efab..4beebb5 100644 --- a/examples/equiv.ctt +++ b/examples/equiv.ctt @@ -45,3 +45,24 @@ Equiv (A B : U) : U = (f : A -> B) * isEquiv A B f lemIdEquiv (A B:U) (f g : Equiv A B) (h:Id (A->B) f.1 g.1) : Id (Equiv A B) f g = (h@i,(lemPropF (A->B) (isEquiv A B) (propIsEquiv A B) f.1 g.1 h f.2 g.2)@i) + +-- a general lemma about equivalence and fibrations + +Sigma (A:U) (F:A->U) : U = (x:A) * F x + +lemEquivFib (A:U) (F G :A -> U) (f:(x:A) -> F x -> G x) + (h : isEquiv (Sigma A F) (Sigma A G) (\ (xp : Sigma A F) -> (xp.1,f xp.1 xp.2))) (x:A) (v:G x) : + isContr (fiber (F x) (G x) (f x) v) = (rem7,psi (rem1.2)) + where + AF : U = Sigma A F + AG : U = Sigma A G + g (xp : AF) : AG = (xp.1,f xp.1 xp.2) + rem1 : isContr (fiber AF AG g (x,v)) = h (x,v) + phi (z:fiber (F x) (G x) (f x) v) : fiber AF AG g (x,v) = ((x,z.1),(x,(z.2)@ i)) + psi (z:fiber AF AG g (x,v)) : fiber (F x) (G x) (f x) v = transport ( (u : F (p@-i)) * IdP (G (p@-i /\ j)) v (f (p@-i) u)) (w,q) + where yu : AF = z.1 + y : A = yu.1 + w : F y = yu.2 + p : Id A x y = (rem3 @ i).1 + q : IdP (G (p@j)) v (f y w) = ((z.2) @ i).2 + rem7 (z0 z1 : fiber (F x) (G x) (f x) v) : Id (fiber (F x) (G x) (f x) v) z0 z1 = psi ((rem1.1 (phi z0) (phi z1))@i)