From: Anders Mörtberg Date: Fri, 15 Jan 2016 03:55:34 +0000 (-0500) Subject: setquot is a set X-Git-Url: https://git.ak3n.com/?a=commitdiff_plain;h=138fd1cceecd62fd7cd03bb2979eb142c9aec658;p=cubicaltt.git setquot is a set --- diff --git a/examples/setquot.ctt b/examples/setquot.ctt index ec2db10..0efaa96 100644 --- a/examples/setquot.ctt +++ b/examples/setquot.ctt @@ -183,17 +183,14 @@ setquotuniv2prop (X : U) (R : eqrel X) (P : setquot X R.1 -> setquot X R.1 -> hP (\ (x : X) -> setquotunivprop X R (\ (c0 : setquot X R.1) -> P c0 (setquotpr X R x)) (\ (x0 : X) -> ps x0 x) c) c' -isincl (X Y : U) (f : X -> Y) : U = (y : Y) -> prop (fiber X Y f y) - - --- Theorem isasetsetquot {X : UU} (R : hrel X) : isaset (setquot R). --- Proof. --- apply (isasetsubset (@pr1 _ _) (isasethsubtypes X)). --- apply isinclpr1; intro x. --- apply isapropiseqclass. --- Defined. +setsetquot (X : U) (R : hrel X) : set (setquot X R) = + setSig (hsubtypes X) (\(A : hsubtypes X) -> iseqclass X R A) + sA sB + where + sA : set (hsubtypes X) = sethsubtypes X + sB (x : hsubtypes X) : set (iseqclass X R x) = propSet (iseqclass X R x) (propiseqclass X R x) -setsetquot (X : U) (R : hrel X) : set (setquot X R) = undefined +isincl (X Y : U) (f : X -> Y) : U = (y : Y) -> prop (fiber X Y f y) iscompsetquotpr (X : U) (R : eqrel X) (x x' : X) (a : (R.1 x x').1) : Id (setquot X R.1) (setquotpr X R x) (setquotpr X R x') = undefined