import gradLemma
transEquivToId (A B : U) (w : equiv A B) : Id U A B =
- <i> glue B [ (i=1) -> (B,transDelta B), (i=0) -> (A,w) ]
+ <i> glue B [ (i = 1) -> (B,eB.1,invEq B B eB,retEq B B eB,secEq B B eB)
+ , (i = 0) -> (A,w.1,invEq A B w,retEq A B w,secEq A B w) ]
+ where eB : equiv B B = transDelta B
eqToEq (A B : U) (p : Id U A B)
: Id (Id U A B) (transEquivToId A B (transEquiv A B p)) p
- = <j i> glue B
- [ (i=0) -> (A,transEquiv A B p)
- , (i=1) -> (B,transDelta B)
- , (j=1) -> (p@i,transEquiv (p@i) B (<k> p @ (i \/ k)))]
-
--- The normal form of this is much bigger than the normal form of eqToEq
-eqToEq' (A : U) : (B : U) (p : Id U A B)
- -> Id (Id U A B) (transEquivToId A B (transEquiv A B p)) p
- = J U A
- (\ (B : U) (p : Id U A B) ->
- Id (Id U A B) (transEquivToId A B (transEquiv A B p)) p)
- (<j i> glue A
- [ (i=0) -> (A,transDelta A)
- , (i=1) -> (A,transDelta A)
- , (j=1) -> (A,transDelta A)])
+ = <j i> let e : equiv A B = transEquiv A B p
+ f : equiv B B = transDelta B
+ Ai : U = p@i
+ g : equiv Ai B = transEquiv Ai B (<k> p @ (i \/ k))
+ in glue B
+ [ (i = 0) -> (A,e.1,invEq A B e,retEq A B e,secEq A B e)
+ , (i = 1) -> (B,f.1,invEq B B f,retEq B B f,secEq B B f)
+ , (j = 1) -> (p@i,g.1,invEq Ai B g,retEq Ai B g,secEq Ai B g) ]
transIdFun (A B : U) (w : equiv A B)
: Id (A -> B) (trans A B (transEquivToId A B w)) w.1 =
(transEquiv A B,gradLemma (Id U A B) (equiv A B) (transEquiv A B)
(transEquivToId A B) (idToId A B) (eqToEq A B))
-
--- Alternative definition:
-
--- Any equality defines an equivalence
-idToEquiv (A : U) : (B : U) -> Id U A B -> equiv A B =
- J U A (\ (B : U) (_ : Id U A B) -> equiv A B) (idEquiv A)
-
-equivId (A B : U) (f : A -> B) (s : (y : B) -> fiber A B f y)
- (t : (y : B) (w : fiber A B f y) -> Id (fiber A B f y) (s y) w)
- : Id U A B = <i> glue B [ (i = 1) -> (B,idEquiv B), (i = 0) -> (A,f,s,t)]
-
-equivToId (A B : U) (w : equiv A B) : Id U A B =
- <i> glue B [ (i = 1) -> (B,idEquiv B), (i = 0) -> (A,w) ]
-
-idToEquivIdFun (A B : U) (w : equiv A B)
- : Id (A -> B) (idToEquiv A B (equivToId A B w)).1 w.1 =
- <i> \(a : A) -> let b : B = w.1 (fill (<_> A) a [] @ -i)
- in (addf (f (f b)) b (addf (f b) b (trf b))) @ i
- where p : A -> B = (idToEquiv A B (equivToId A B w)).1
- f (b : B) : B = comp (<_> B) b []
- trf (b : B) : Id B (f b) b =
- <i> fill (<_> B) b [] @ -i
- addf (b b' : B) : Id B b b' -> Id B (f b) b' =
- compId B (f b) b b' (trf b)
-
-idToEquivK (A B : U) (w : equiv A B) : Id (equiv A B) (idToEquiv A B (equivToId A B w)) w =
- lemSig (A -> B) (isEquiv A B) (propIsEquiv A B)
- (idToEquiv A B (equivToId A B w)) w (idToEquivIdFun A B w)
-
-- This takes too long to normalize:
-test (A : U) : Id (equiv A A) (idToEquiv A A (equivToId A A (idEquiv A))) (idEquiv A) =
- idToEquivK A A (idEquiv A)
-
-
-
-
-
-
-
--- Old code:
--- -- we do something simpler than univalence
-
--- transpIsEquiv (A B:U) (p:Id U A B) : isEquiv A B (\ (x:A) -> transport p x) =
--- transport (<i>isEquiv A (p@i) (\ (x:A) -> transport (<j>p@i/\j) x)) (idIsEquiv A)
-
--- IdToEquiv (A B:U) (p: Id U A B) : Equiv A B = (\ (x:A) -> transport p x, transpIsEquiv A B p)
-
--- EquivToId (A B:U) (z:Equiv A B) : Id U A B = isEquivEq A B z.1 z.2
+test (A : U) : Id (equiv A A) (transEquiv A A (transEquivToId A A (idEquiv A))) (idEquiv A) =
+ idToId A A (idEquiv A)
--- secIdEquiv (A B :U) (p : Id U A B) : Id (Id U A B) (EquivToId A B (IdToEquiv A B p)) p =
--- transport (<i>Id (Id U A (p@i)) (EquivToId A (p@i) (IdToEquiv A (p@i) (<j>p@i/\j))) (<j>p@i/\j))
--- (<i>isoIdRef A@-i)