test'' : Id (P' true').1 test test' = (P' true').2 test test'
+-- These two terms are not convertible:
+-- test' : Id (P' true').1 (K' true')
+-- (hdisj_in1 (Id (setquot bool R.1) true' true') (Id (setquot bool R.1) true' false') (<_> true')) =
+-- <_> K' true'
+
+
-- Another test:
inl p -> inl (hinhpr (Id bool' x true') p)
inr p -> inr (hinhpr (Id bool' x false') p)
+-- finally the map:
foo (x : bool') : bool = f x rem
where
rem : or (ishinh (Id bool' x true')).1 (ishinh (Id bool' x false')).1 =
(or (ishinh (Id bool' x true')).1 (ishinh (Id bool' x false')).1,test3 x)
(bar x) (K' x)
--- This should evaluate to true??
+-- > :n testfoo
+-- NORMEVAL: true
+-- Time: 0m0.490s
testfoo : bool = foo true'
ntrue' : bool' = (\(x : bool) -> (IdP (<i0> bool) true x,lem8 x),((\(P : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : (sig bool (\(x : bool) -> IdP (<i0> bool) true x)) -> P.1) -> f ((true,<i0> true)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) true x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> true, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) true x1) -> \(X2 : IdP (<i0> bool) true x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ]))
--- Why is this not working?
+-- Why is this not working? Bug in pretty printer?
-- ntest : (P' true').1 = \(P : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : or (IdP (<i0> sig (bool -> (sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b))) (\(A : bool -> (sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b))) -> sig (sig ((P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) (\(_ : (P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) -> (x1 x2 : bool) -> (IdP (<i0> bool) x1 x2) -> ((A x1).1 -> (A x2).1))) (\(_ : sig ((P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) (\(_ : (P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) -> (x1 x2 : bool) -> (IdP (<i0> bool) x1 x2) -> ((A x1).1 -> (A x2).1))) -> (x1 x2 : bool) -> (A x1).1 -> ((A x2).1 -> (IdP (<i0> bool) x1 x2))))) ((\(x : bool) -> (IdP (<i0> bool) true x,lem8 x),((\(P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : (sig bool (\(x : bool) -> IdP (<i0> bool) true x)) -> P0.1) -> f ((true,<i0> true)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) true x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> true, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) true x1) -> \(X2 : IdP (<i0> bool) true x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ]))) ((\(x : bool) -> (IdP (<i0> bool) true x,lem8 x),((\(P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : (sig bool (\(x : bool) -> IdP (<i0> bool) true x)) -> P0.1) -> f ((true,<i0> true)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) true x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> true, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) true x1) -> \(X2 : IdP (<i0> bool) true x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ]))), IdP (<i0> sig (bool -> (sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b))) (\(A : bool -> (sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b))) -> sig (sig ((P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) (\(_ : (P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) -> (x1 x2 : bool) -> (IdP (<i0> bool) x1 x2) -> ((A x1).1 -> (A x2).1))) (\(_ : sig ((P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) (\(_ : (P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> ((sig bool (\(x : bool) -> (A x).1)) -> P0.1) -> P0.1) -> (x1 x2 : bool) -> (IdP (<i0> bool) x1 x2) -> ((A x1).1 -> (A x2).1))) -> (x1 x2 : bool) -> (A x1).1 -> ((A x2).1 -> (IdP (<i0> bool) x1 x2))))) ((\(x : bool) -> (IdP (<i0> bool) true x,lem8 x),((\(P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : (sig bool (\(x : bool) -> IdP (<i0> bool) true x)) -> P0.1) -> f ((true,<i0> true)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) true x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> true, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) true x1) -> \(X2 : IdP (<i0> bool) true x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ]))) ((\(x : bool) -> (IdP (<i0> bool) false x,lem7 x),((\(P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f : (sig bool (\(x : bool) -> IdP (<i0> bool) false x)) -> P0.1) -> f ((false,<i0> false)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) false x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> false, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) false x1) -> \(X2 : IdP (<i0> bool) false x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ])))) -> P.1) -> f (inl (<i0> (\(x : bool) -> (IdP (<i0> bool) true x,lem8 x),((\(P0 : sig U (\(X : U) -> (a b : X) -> IdP (<i0> X) a b)) -> \(f0 : (sig bool (\(x : bool) -> IdP (<i0> bool) true x)) -> P0.1) -> f0 ((true,<i0> true)),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) x1 x2) -> \(X2 : IdP (<i0> bool) true x1) -> <i0> comp (<i1> bool) (X2 @ i0) [ (i0 = 0) -> <i1> true, (i0 = 1) -> <i1> X1 @ i1 ]),\(x1 x2 : bool) -> \(X1 : IdP (<i0> bool) true x1) -> \(X2 : IdP (<i0> bool) true x2) -> <i0> comp (<i1> bool) (X1 @ -i0) [ (i0 = 0) -> <i1> x1, (i0 = 1) -> <i1> X2 @ i1 ]))))
-
--- This is not true:
--- test' : Id (P' true').1 (K' true')
--- (hdisj_in1 (Id (setquot bool R.1) true' true') (Id (setquot bool R.1) true' false') (<_> true')) =
--- <_> K' true'