, (j = 1) -> (p@i,g.1,invEq Ai B g,retEq Ai B g,secEq Ai B g) ]\r
\r
transIdFun (A B : U) (w : equiv A B)\r
- : Id (A -> B) (trans A B (transEquivToId A B w)) w.1 =\r
- <i> \(a : A) -> let b : B = w.1 a\r
- in addf (f (f (f b))) b (addf (f (f b)) b (addf (f b) b (trf b))) @ i\r
- where f (b : B) : B = comp (<_> B) b []\r
- trf (b : B) : Id B (f b) b =\r
- <i> fill (<_> B) b [] @ -i\r
- addf (b b' : B) : Id B b b' -> Id B (f b) b' =\r
- compId B (f b) b b' (trf b)\r
+ : Id (A -> B) w.1 (trans A B (transEquivToId A B w)) =\r
+ <i> \ (a:A) -> \r
+ let b : B = w.1 a\r
+ in comp (<j> B) (comp (<j> B) (comp (<j> B) (comp (<j> B) b [(i=0)-><j>b]) [(i=0)-><j>b]) [(i=0)-><j>b]) [(i=0)-><j>b]\r
\r
idToId (A B : U) (w : equiv A B)\r
: Id (equiv A B) (transEquiv A B (transEquivToId A B w)) w\r
= equivLemma A B (transEquiv A B (transEquivToId A B w)) w\r
- (transIdFun A B w)\r
+ (<i>transIdFun A B w@-i)\r
+\r
\r