= (if_star, pg, qq, hole0)
in (((pb n X).2 pp).1.1, <i>((pb n X).2 pp).1.2.1@-i, ((pb n X).2 pp).1.2.2)
+ sqD (n : nat) (X : ob (suc n)) (Y : obD) (f : homD Y (n, X.1))
+ : (f_star : ob (suc Y.1)) * (ftf : Id obD (Y.1, ft0 Y.1 f_star) Y)
+ * (q : homD (suc Y.1, f_star) (suc n, X))
+ * Id (homD (suc Y.1, f_star) (n, X.1))
+ (cC DC (suc Y.1, f_star) Y (n, X.1) (pD (suc Y.1, f_star) Y ftf) f)
+ (cC DC (suc Y.1, f_star) (suc n, X) (n, X.1) q (pD (suc n, X) (n, X.1) (<_> (n, X.1))))
+ = ((fstar n X Y f).2, <_> Y, (q_ n X Y f).1,
+ transport
+ (<i> Id (homD (fstar n X Y f) (n, X.1))
+ (cC DC (fstar n X Y f) Y (n, X.1) (transRefl (cH DC (fstar n X Y f) Y) (p0 (suc Y.1) (fstar n X Y f).2) @ -i) f)
+ (cC DC (fstar n X Y f) (suc n, X) (n, X.1) (q_ n X Y f).1 (transRefl (cH DC (suc n, X) (n, X.1)) (p0 (suc n) X) @ -i)))
+ (q_ n X Y f).2.1)
+
qId (n : nat) (X : ob (suc n)) :
(p0 : Id obD (fstar n X (n, X.1) (cId DC (n, X.1))) (suc n, X))
* (IdP (<i>cH DC (p0@i) (suc n, X)) (q_ n X (n, X.1) (cId DC (n, X.1))).1 (cId DC (suc n, X)))
(pb Z.1 (Z.2, gF)).1.2.2.2
pp : cospanCone C.1 (cs n X)
= (if_star, pg, qq, hole0)
-
f_star2 : obD = fstar Y.1 (fstar n X Y f).2 Z g
if_star2 : cA C.1 = intD f_star2
q2 : cH DC f_star2 (fstar n X Y f) = (q_ Y.1 (fstar n X Y f).2 Z g).1
= cC DC f_star2 Z (n,X.1) (p0 (suc Z.1) f_star2.2) F
qq2 : cH C.1 if_star2 VT
= (pb Z.1 (Z.2, cC C.1 (intD Z) (intD Y) V g (cC C.1 (intD Y) (int n X.1) V f X.2))).1.2.2.1
-
p1 : Id obD f_star2 f_star
= <i> (suc Z.1, Z.2, cIdC C.1 (intD Z) (intD Y) (int n X.1) V g f X.2 @ -i)
-
pp2 : cospanCone C.1 (cs n X)
= (if_star2, pg2, qq2,
transport (<i>Id (cH C.1 (intD(p1@-i)) V)
(cC C.1 (intD(p1@-i)) (int n X.1) V (cC DC (p1@-i) Z (n,X.1) (p0 (suc Z.1) (p1@-i).2) F) X.2)
(cC C.1 (intD(p1@-i)) VT V (pb Z.1 (Z.2, cIdC C.1 (intD Z) (intD Y) (int n X.1) V g f X.2 @ i)).1.2.2.1 p))
hole0)
-
ppId : Id (cospanCone C.1 (cs n X)) pp2 pp
= <i> (intD (p1@i),
cC DC (p1@i) Z (n,X.1) (p0 (suc Z.1) (p1@i).2) F,
(q_ n X Z (cC DC Z Y (n, X.1) g f)).1
qId)
+ qComp' (n : nat) (X : ob (suc n))
+ (Y : obD) (f : homD Y (n, X.1))
+ (Z : obD) (g : homD Z Y)
+ : (let g' : homD Z Y = transport (<_> homD Z Y) g in
+ (p0 : Id obD (fstar Y.1 (fstar n X Y f).2 Z g')
+ (fstar n X Z (cC DC Z Y (n, X.1) g f)))
+ * IdP (<i> cH DC (p0@i) (suc n, X))
+ (cC DC (fstar Y.1 (fstar n X Y f).2 Z g') (fstar n X Y f) (suc n, X)
+ (q_ Y.1 (fstar n X Y f).2 Z g').1 (q_ n X Y f).1)
+ (q_ n X Z (cC DC Z Y (n, X.1) g f)).1)
+ = transport
+ (<j> (p0 : Id obD (fstar Y.1 (fstar n X Y f).2 Z (transRefl (homD Z Y) g @ -j))
+ (fstar n X Z (cC DC Z Y (n, X.1) g f)))
+ * IdP (<i> cH DC (p0@i) (suc n, X))
+ (cC DC (fstar Y.1 (fstar n X Y f).2 Z (transRefl (homD Z Y) g @ -j)) (fstar n X Y f) (suc n, X)
+ (q_ Y.1 (fstar n X Y f).2 Z (transRefl (homD Z Y) g @ -j)).1 (q_ n X Y f).1)
+ (q_ n X Z (cC DC Z Y (n, X.1) g f)).1)
+ (qComp n X Y f Z g)
+
hole : C0System
- = (ob, homD, D, obSet, ft0, pD, ?)
+ = (ob, homD, D, obSet, ft0, pD, sqD, qId, qComp')