add_comm (a : nat) : (n : nat) -> Id nat (add a n) (add n a) = split
zero -> <i> add_zero a @ -i
- suc m -> <i> comp nat (suc (add_comm a m @ i)) [ (i = 1) -> <j> add_suc m a @ -j]
+ suc m -> <i> comp nat (suc (add_comm a m @ i)) [ (i = 0) -> <j> suc (add a m),
+ (i = 1) -> <j> add_suc m a @ -j]
assocAdd (a b:nat) : (c:nat) -> Id nat (add a (add b c)) (add (add a b) c) = split
zero -> <i>add a b
suc c1 -> <i>suc (assocAdd a b c1@i)
-test (A:U) (a b c d e : A) (p:Id A a b) (q:Id A b c) (r:Id A c d) (s:Id A d e) : Id A a e =
- <i>comp A (p@i) [ (i=1) -> <i>comp A (q@i) [ (i=1) -> <i>comp A (r@i) [ (i=1) -> s]]]
+-- test (A:U) (a b c d e : A) (p:Id A a b) (q:Id A b c) (r:Id A c d) (s:Id A d e) : Id A a e =
+-- <i>comp A (p@i) [ (i=1) -> <i>comp A (q@i) [ (i=1) -> <i>comp A (r@i) [ (i=1) -> s]]]
-data tree = leaf | bin (t0 t1:tree)
+-- data tree = leaf | bin (t0 t1:tree)
-swap : tree -> tree = split
- leaf -> leaf
- bin t0 t1 -> bin (swap t1) (swap t0)
+-- swap : tree -> tree = split
+-- leaf -> leaf
+-- bin t0 t1 -> bin (swap t1) (swap t0)
-lem : (t:tree) -> Id tree (swap (swap t)) t = split
- leaf -> <i>leaf
- bin t0 t1 -> <i>bin (lem t0@i) (lem t1@i)
+-- lem : (t:tree) -> Id tree (swap (swap t)) t = split
+-- leaf -> <i>leaf
+-- bin t0 t1 -> <i>bin (lem t0@i) (lem t1@i)
-pred : nat -> nat = split
- zero -> zero
- suc n -> n
+-- pred : nat -> nat = split
+-- zero -> zero
+-- suc n -> n
-simplAdd (b c :nat) : (a : nat) -> Id nat (add b a) (add c a) -> Id nat b c = split
- zero -> \ (h:Id nat b c) -> h
- suc a1 -> \ (h : Id nat (suc (add b a1)) (suc (add c a1))) -> simplAdd b c a1 (<i>pred (h@i))
+-- simplAdd (b c :nat) : (a : nat) -> Id nat (add b a) (add c a) -> Id nat b c = split
+-- zero -> \ (h:Id nat b c) -> h
+-- suc a1 -> \ (h : Id nat (suc (add b a1)) (suc (add c a1))) -> simplAdd b c a1 (<i>pred (h@i))
-corSimplAdd (b c a :nat) (h: Id nat (add a b) (add a c)) : Id nat b c = simplAdd b c a rem
- where rem : Id nat (add b a) (add c a) =
- <i>comp nat ((add_comm b a)@i) [(i=1) -> <i>comp nat (h@i) [(i=1) -> add_comm a c]]
+-- corSimplAdd (b c a :nat) (h: Id nat (add a b) (add a c)) : Id nat b c = simplAdd b c a rem
+-- where rem : Id nat (add b a) (add c a) =
+-- <i>comp nat ((add_comm b a)@i) [(i=1) -> <i>comp nat (h@i) [(i=1) -> add_comm a c]]
-leq (b c:nat) : U = (a : nat) * Id nat (add a b) c
\ No newline at end of file
+-- leq (b c:nat) : U = (a : nat) * Id nat (add a b) c
\ No newline at end of file