+++ /dev/null
-module booltest where
-
-import bool
-import newhedberg
-
-falseNotTrue (h : Id bool false true) : N0 = transport (<i> T (h @ i)) tt
- where T : bool -> U = split
- false -> Unit
- true -> N0
-
-trueNotFalse (h : Id bool true false) : N0 = falseNotTrue (<i> h @ - i)
-
-lemFalse : (b : bool) -> dec (Id bool false b) = split
- false -> inl (<i> false)
- true -> inr falseNotTrue
-
-lemTrue : (b : bool) -> dec (Id bool true b) = split
- false -> inr trueNotFalse
- true -> inl (<i> true)
-
-boolDec : (a b : bool) -> dec (Id bool a b) = split
- false -> lemFalse
- true -> lemTrue
-
-boolSet : set bool = corrhedberg bool boolDec
-
-F2Set : set F2 = subst U set bool F2 boolEqF2 boolSet
-
-T : U = Id F2 oneF2 oneF2
-p0 : T = refl F2 oneF2
-
-test : Id T p0 p0 = F2Set oneF2 oneF2 p0 p0
\ No newline at end of file
nil -> \ (ys zs:list A) -> <i>append A ys zs
cons x xs -> \ (ys zs:list A) -> <i>cons x (assoc A xs ys zs@i)
+{-
+
lem4 (A:U) : (xs ys:list A) -> Id (list A) (reverse A (append A xs ys)) (append A (reverse A ys) (reverse A xs)) = split
nil -> \ (ys:list A) -> <i>lem2 A (reverse A ys)@-i
cons x xs -> \ (ys:list A) -> <i>comp (list A) (append A (lem4 A xs ys@i) (cons x nil))
nil -> <i>nil
cons x xs -> <i>comp (list A) (lem4 A (reverse A xs) (cons x nil)@i) [(i=1) -> <j>cons x (lem5 A xs@j)]
+-}