+-- or A B is discrete if A and B are\r
module discor where\r
\r
import prelude\r
+-- The groupoid truncation as a HIT
module groupoidTrunc where
import equiv
+-- Hedbergs lemma: a type with decidable equality is a set\r
module hedberg where\r
\r
import prelude\r
+-- The loop space of the circle is equal to Z
module helix where
import circle
+-- Non-standard natural numbers as a HIT without any path constructor
module hnat where
import nat
+-- Identity types (variation of Path types with definitional equality
+-- for J). Including a proof univalence expressed only using Id.
module idtypes where
import sigma
testOneZ : Z = transport sucPathZ zeroZ\r
testNOneZ : Z = transport (<i> sucPathZ @ - i) zeroZ\r
\r
+\r
+\r
ZSet : set Z = hedberg Z (orDisc nat nat natDec natDec)\r