ui1 = comp i a u1 t1s
comp_u2 = comp i (app f fill_u1) u2 t2s
VPi{} -> VComp (VPath i a) u (Map.map (VPath i) ts)
- VU -> glue u (Map.map (eqToEquiv . VPath i) ts)
- VGlue b equivs -> compGlue i b equivs u ts
+ VU -> glue u (Map.map (eqToIso . VPath i) ts)
+ VGlue b isos -> compGlue i b isos u ts
Ter (Sum _ _ nass) env -> case u of
VCon n us | all isCon (elems ts) -> case lookupLabel n nass of
Just as -> let tsus = transposeSystemAndList (Map.map unCon ts) us
hComp a u us | eps `member` us = (us ! eps) @@ One
| otherwise = VHComp a u us
-
-------------------------------------------------------------------------------
--- | Glueing
-
--- An equivalence for a type b is a four-tuple (a,f,s,t) where
--- a : U
--- f : a -> b
--- s : (y : b) -> fiber a b f y
--- t : (y : b) (w : fiber a b f y) -> s y = w
--- with fiber a b f y = (x : a) * (f x = y)
-
--- Extraction functions for getting a, f, s and t:
-equivDom :: Val -> Val
-equivDom = fstVal
-
-equivFun :: Val -> Val
-equivFun = fstVal . sndVal
-
-equivCenter :: Val -> Val
-equivCenter = fstVal . sndVal . sndVal
-
-equivIsCenter :: Val -> Val
-equivIsCenter = sndVal . sndVal . sndVal
+-- | Glue
+--
+-- An iso for a type b is a five-tuple: (a,f,g,r,s) where
+-- a : U
+-- f : a -> b
+-- g : b -> a
+-- s : forall (y : b), f (g y) = y
+-- t : forall (x : a), g (f x) = x
+
+-- Extraction functions for getting a, f, g, s and t:
+isoDom :: Val -> Val
+isoDom = fstVal
+
+isoFun :: Val -> Val
+isoFun = fstVal . sndVal
+
+isoInv :: Val -> Val
+isoInv = fstVal . sndVal . sndVal
+
+isoSec :: Val -> Val
+isoSec = fstVal . sndVal . sndVal . sndVal
+
+isoRet :: Val -> Val
+isoRet = sndVal . sndVal . sndVal . sndVal
+
+-- -- Every path in the universe induces an iso
+eqToIso :: Val -> Val
+eqToIso e = VPair e1 (VPair f (VPair g (VPair s t)))
+ where e1 = e @@ One
+ (i,j,x,y,ev) = (Name "i",Name "j",Var "x",Var "y",Var "E")
+ inv t = Path i $ AppFormula t (NegAtom i)
+ evinv = inv ev
+ (ev0, ev1) = (AppFormula ev (Dir Zero),AppFormula ev (Dir One)) -- (b,a)
+ eenv = upd ("E",e) emptyEnv
+ -- eplus : e0 -> e1
+ eplus z = Comp ev z empty
+ -- eminus : e1 -> e0
+ eminus z = Comp evinv z empty
+ -- NB: edown is *not* transNegFill
+ eup z = Fill ev z empty
+ edown z = Fill evinv z empty
+ f = Ter (Lam "x" ev1 (eminus x)) eenv
+ g = Ter (Lam "y" ev0 (eplus y)) eenv
+ -- s : (y : e0) -> eminus (eplus y) = y
+ ssys = mkSystem [(j ~> 1, inv (eup y))
+ ,(j ~> 0, edown (eplus y))]
+ s = Ter (Lam "y" ev0 $ Path j $ Comp evinv (eplus y) ssys) eenv
+ -- t : (x : e1) -> eplus (eminus x) = x
+ tsys = mkSystem [(j ~> 0, eup (eminus x))
+ ,(j ~> 1, inv (edown x))]
+ t = Ter (Lam "x" ev1 $ Path j $ Comp ev (eminus x) tsys) eenv
glue :: Val -> System Val -> Val
-glue b ts | eps `member` ts = equivDom (ts ! eps)
+glue b ts | eps `member` ts = isoDom (ts ! eps)
| otherwise = VGlue b ts
glueElem :: Val -> System Val -> Val
| otherwise = VGlueElem v us
unGlue :: Val -> Val -> System Val -> Val
-unGlue w b equivs
- | eps `member` equivs = app (equivFun (equivs ! eps)) w
- | otherwise = case w of
- VGlueElem v us -> v
- _ -> VUnGlueElem w b equivs
-
+unGlue w b isos | eps `member` isos = app (isoFun (isos ! eps)) w
+ | otherwise = case w of
+ VGlueElem v us -> v
+ _ -> VUnGlueElem w b isos
+
compGlue :: Name -> Val -> System Val -> Val -> System Val -> Val
-compGlue i b equivs wi0 ws = glueElem vi1'' usi1''
+compGlue i b isos wi0 ws = glueElem vi1'' usi1''
where bi1 = b `face` (i ~> 1)
- vs = mapWithKey (\alpha wAlpha ->
- unGlue wAlpha (b `face` alpha) (equivs `face` alpha))
- ws
+ vs = mapWithKey
+ (\alpha wAlpha -> unGlue wAlpha
+ (b `face` alpha) (isos `face` alpha)) ws
vsi1 = vs `face` (i ~> 1) -- same as: border vi1 vs
- vi0 = unGlue wi0 (b `face` (i ~> 0)) (equivs `face` (i ~> 0)) -- in b(i0)
+ vi0 = unGlue wi0 (b `face` (i ~> 0)) (isos `face` (i ~> 0)) -- in b(i0)
v = fill i b vi0 vs -- in b
vi1 = comp i b vi0 vs -- is v `face` (i ~> 1) in b(i1)
- equivsI1 = equivs `face` (i ~> 1)
- equivs' = filterWithKey (\alpha _ -> i `notMember` alpha) equivs
- equivs'' = filterWithKey (\alpha _ -> alpha `notMember` equivs') equivsI1
+ isosI1 = isos `face` (i ~> 1)
+ isos' = filterWithKey (\alpha _ -> i `notMember` alpha) isos
+ isos'' = filterWithKey (\alpha _ -> alpha `notMember` isos) isosI1
us' = mapWithKey (\gamma isoG ->
- fill i (equivDom isoG) (wi0 `face` gamma) (ws `face` gamma))
- equivs'
+ fill i (isoDom isoG) (wi0 `face` gamma) (ws `face` gamma))
+ isos'
usi1' = mapWithKey (\gamma isoG ->
- comp i (equivDom isoG) (wi0 `face` gamma) (ws `face` gamma))
- equivs'
+ comp i (isoDom isoG) (wi0 `face` gamma) (ws `face` gamma))
+ isos'
ls' = mapWithKey (\gamma isoG ->
pathComp i (b `face` gamma) (v `face` gamma)
- (equivFun isoG `app` (us' ! gamma)) (vs `face` gamma))
- equivs'
+ (isoFun isoG `app` (us' ! gamma)) (vs `face` gamma))
+ isos'
vi1' = compLine (constPath bi1) vi1
(ls' `unionSystem` Map.map constPath vsi1)
wsi1 = ws `face` (i ~> 1)
- -- for gamma in equivs'', (i1) gamma is in equivs, so wsi1 gamma
+ -- for gamma in isos'', (i1) gamma is in isos, so wsi1 gamma
-- is in the domain of isoGamma
uls'' = mapWithKey (\gamma isoG ->
gradLemma (bi1 `face` gamma) isoG
((usi1' `face` gamma) `unionSystem` (wsi1 `face` gamma))
(vi1' `face` gamma))
- equivs''
+ isos''
- vsi1' = Map.map constPath $ border vi1' equivs' `unionSystem` vsi1
+ vsi1' = Map.map constPath $ border vi1' isos' `unionSystem` vsi1
vi1'' = compLine (constPath bi1) vi1'
(Map.map snd uls'' `unionSystem` vsi1')
usi1'' = mapWithKey (\gamma _ ->
- if gamma `member` usi1'
- then usi1' ! gamma
- else fst (uls'' ! gamma))
- equivsI1
+ if gamma `member` usi1' then usi1' ! gamma
+ else fst (uls'' ! gamma))
+ isosI1
-- assumes u and u' : A are solutions of us + (i0 -> u(i0))
-- The output is an L-path in A(i1) between u(i1) and u'(i1)
where j = fresh (Atom i,a,us,u,u')
us' = insertsSystem [(j ~> 0, u), (j ~> 1, u')] us
--- Grad Lemma, takes an equivalence f, an L-system us and a value v,
--- s.t. f us = border v. Outputs (u,p) s.t. border u = us and an
--- L-path p between v and f u.
+-- Grad Lemma, takes an iso f, a system us and a value v, s.t. f us =
+-- border v. Outputs (u,p) s.t. border u = us and a path p between v
+-- and f u.
gradLemma :: Val -> Val -> System Val -> Val -> (Val, Val)
-gradLemma b e us v = (u,VPath j $ tau `sym` j)
- where i:j:_ = freshs (b,e,us,v)
- (a,f,s,t) = (equivDom e,equivFun e,equivCenter e,equivIsCenter e)
- g y = fstVal (app s y) -- g : b -> a
- eta y = sndVal (app s y) -- eta b @ i : f (g b) --> b
- us' = mapWithKey (\alpha uAlpha ->
- let fuAlpha = app (f `face` alpha) uAlpha
- in app (app (t `face` alpha) fuAlpha)
- (VPair uAlpha (constPath fuAlpha)))
- us
- theta = fill i a (g v) (Map.map (fstVal . (@@ i)) us')
- u = theta `face` (i ~> 1)
- vs = insertsSystem [(j ~> 0, app f theta),(j ~> 1, v)]
- (Map.map ((@@ j) . sndVal . (@@ i)) us')
- tau = comp i b (eta v @@ j) vs
-
--- Every path in the universe induces an equivalence
-eqToEquiv :: Val -> Val
-eqToEquiv e = VPair e1 (VPair f (VPair s t))
- where (i,j,x,y,w,ev) = (Name "i",Name "j",Var "x",Var "y",Var "w",Var "E")
- e1 = e @@ One
- inv t = Path i $ AppFormula t (NegAtom i)
- evinv = inv ev
- (ev0,ev1) = (AppFormula ev (Dir Zero),AppFormula ev (Dir One)) -- (b,a)
- eenv = upd ("E",e) emptyEnv
- -- eplus : e0 -> e1
- eplus z = Comp ev z empty
- -- eminus : e1 -> e0
- eminus z = Comp evinv z empty
- -- NB: edown is *not* transNegFill
- eup z = Fill ev z empty
- edown z = Fill evinv z empty
- f = Ter (Lam "x" ev1 (eminus x)) eenv
- -- g = Ter (Lam "y" ev0 (eplus y)) eenv
- etasys z0 = mkSystem [(j ~> 1, inv (eup z0))
- ,(j ~> 0, edown (eplus z0))]
- -- eta : (y : e0) -> eminus (eplus y) = y
- eta z0 = Path j $ Comp evinv (eplus z0) (etasys z0)
- etaSquare z0 = Fill evinv (eplus z0) (etasys z0)
- s = Ter (Lam "y" ev0 $ Pair (eplus y) (eta y)) eenv
- (a,p) = (Fst w,Snd w) -- a : e1 and p : eminus a = y
- phisys l = mkSystem [ (l ~> 0, inv (edown a))
- , (l ~> 1, eup y)]
- psi l = Comp ev (AppFormula p (Atom l)) (phisys l)
- phi l = Fill ev (AppFormula p (Atom l)) (phisys l)
- tsys = mkSystem
- [ (j ~> 0, edown (psi i))
- , (j ~> 1, inv $ eup y)
- , (i ~> 0, inv $ phi j)
- , (i ~> 1, etaSquare y) ]
- -- encode act on terms using Path and AppFormula
- psi' formula = AppFormula (Path j $ psi j) formula
- tprinc = psi' (Atom i :\/: Atom j)
- t2 = Comp evinv tprinc tsys
- t2inv = AppFormula (inv (Path i t2)) (Atom i)
- fibtype = Sigma (Lam "x" ev1 $ IdP (Path (Name "_") ev0) (eminus x) y)
- t = Ter (Lam "y" ev0 $ Lam "w" fibtype $ Path i $
- Pair (psi' (NegAtom i)) (Path j t2inv)) eenv
-
+gradLemma b iso us v = (u, VPath i theta'')
+ where i:j:_ = freshs (b,iso,us,v)
+ (a,f,g,s,t) = (isoDom iso,isoFun iso,isoInv iso,isoSec iso,isoRet iso)
+ us' = mapWithKey (\alpha uAlpha ->
+ app (t `face` alpha) uAlpha @@ i) us
+ gv = app g v
+ theta = fill i a gv us'
+ u = comp i a gv us' -- Same as "theta `face` (i ~> 1)"
+ ws = insertSystem (i ~> 0) gv $
+ insertSystem (i ~> 1) (app t u @@ j) $
+ mapWithKey
+ (\alpha uAlpha ->
+ app (t `face` alpha) uAlpha @@ (Atom i :/\: Atom j)) us
+ theta' = compNeg j a theta ws
+ xs = insertSystem (i ~> 0) (app s v @@ j) $
+ insertSystem (i ~> 1) (app s (app f u) @@ j) $
+ mapWithKey
+ (\alpha uAlpha ->
+ app (s `face` alpha) (app (f `face` alpha) uAlpha) @@ j) us
+ theta'' = comp j b (app f theta') xs
-------------------------------------------------------------------------------
-- | Conversion
(VPath i a,VPath i' a') -> conv ns (a `swap` (i,j)) (a' `swap` (i',j))
(VPath i a,p') -> conv ns (a `swap` (i,j)) (p' @@ j)
(p,VPath i' a') -> conv ns (p @@ j) (a' `swap` (i',j))
- (VAppFormula u x,VAppFormula u' x') -> conv ns (u,x) (u',x')
- (VComp a u ts,VComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
- (VHComp a u ts,VHComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
- (VGlue v equivs,VGlue v' equivs') -> conv ns (v,equivs) (v',equivs')
- (VGlueElem u us,VGlueElem u' us') -> conv ns (u,us) (u',us')
+ (VAppFormula u x,VAppFormula u' x') -> conv ns (u,x) (u',x')
+ (VComp a u ts,VComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
+ (VHComp a u ts,VHComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
+ (VGlue v isos,VGlue v' isos') -> conv ns (v,isos) (v',isos')
+ (VGlueElem u us,VGlueElem u' us') -> conv ns (u,us) (u',us')
(VUnGlueElem u _ _,VUnGlueElem u' _ _) -> conv ns u u'
- _ -> False
+ _ -> False
instance Convertible Ctxt where
conv _ _ _ = True
VPath i u -> VPath i (normal ns u)
VComp u v vs -> compLine (normal ns u) (normal ns v) (normal ns vs)
VHComp u v vs -> hComp (normal ns u) (normal ns v) (normal ns vs)
- VGlue u equivs -> glue (normal ns u) (normal ns equivs)
+ VGlue u isos -> glue (normal ns u) (normal ns isos)
VGlueElem u us -> glueElem (normal ns u) (normal ns us)
VUnGlueElem u b hs -> unGlue (normal ns u) (normal ns b) (normal ns hs)
VVar x t -> VVar x t -- (normal ns t)