inl n -> refl Z (inl n)
inr n -> refl Z (inr n)
--- fromZ (toZ (neg zero)) = fromZ (fun zero)
--- = fromZ zeroZ
--- = fromZ (inr zero)
--- = pos zero
-
--- fromZ (toZ (neg (suc n)) = fromZ (fun (suc n))
--- = fromZ (inl n)
--- = neg (suc n)
-
-sq : Square int (pos zero) (pos zero) (refl int (pos zero))
- (pos zero) (neg zero) zeroP'
- (refl int (pos zero)) zeroP' = undefined
-
fromZK : (a : int) -> Id int (fromZ (toZ a)) a = split
pos n -> refl int (pos n)
neg n -> rem n
where rem : (n : nat) -> Id int (fromZ (toZ (neg n))) (neg n) = split
zero -> zeroP'
suc n -> refl int (neg (suc n))
- zeroP @ i -> sq @ i
+ zeroP @ i -> <j> zeroP' @ i /\ j
isoIntZ : Id U Z int = isoId Z int fromZ toZ fromZK toZK