"examples/susp.ctt")
Because of this it is not necessary to have a special file of
-primitives (like in cubical), for instance function extensionality is
-provable in the system by:
+primitives (like in [cubical](https://github.com/simhu/cubical), for
+instance function extensionality is provable in the system by:
```
funExt (A : U) (B : A -> U) (f g : (x : A) -> B x)
proves that univalence implies function extensionality (the normal
form of these proofs are almost the same).
-
For more examples, see "examples/demo.ctt".
References and notes
--------------------
- * Voevodsky's home page on univalent foundation
+ * [A Cubical Type
+ Theory](http://www.cse.chalmers.se/~coquand/rules5.pdf) -
+ The typing rules of the system
+
+ * Voevodsky's page on [univalent
+ foundations](http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations.html)
* HoTT book and webpage:
[http://homotopytypetheory.org/](http://homotopytypetheory.org/)
- * [A Cubical Type
- Theory](http://www.cse.chalmers.se/~coquand/rules5.pdf) -
- Presenting typing rules of the system
-
* [A Cubical Approach to Synthetic Homotopy
- Theory][http://dlicata.web.wesleyan.edu/pubs/lb15cubicalsynth/lb15cubicalsynth.pdf),
- Dan Licata, Guillaume Brunerie.
+ Theory][http://dlicata.web.wesleyan.edu/pubs/lb15cubicalsynth/lb15cubicalsynth.pdf),
+ Dan Licata, Guillaume Brunerie.
- * Type Theory in Color, J.P. Bernardy, G. Moulin
+ * [Type Theory in
+ Color](http://www.cse.chalmers.se/~bernardy/CCCC.pdf),
+ Jean-Philippe Bernardy, Guilhem Moulin.
- * A simple type-theoretic language: Mini-TT, Th. Coquand,
- Y. Kinoshita, B. Nordström and M. Takeyama
+ * [A simple type-theoretic language:
+ Mini-TT](http://www.cse.chalmers.se/~bengt/papers/GKminiTT.pdf),
+ Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström and Makoto
+ Takeyama - This presents the type theory that the system is based
+ on.
* [A cubical set model of type
- theory](http://www.cse.chalmers.se/~coquand/model1.pdf), M. Bezem,
- Th. Coquand and S. Huber.
+ theory](http://www.cse.chalmers.se/~coquand/model1.pdf), Marc
+ Bezem, Thierry Coquand and Simon Huber.
* [An equivalent presentation of the Bezem-Coquand-Huber category of
- cubical sets](http://arxiv.org/abs/1401.7807), A. Pitts.
-
- This gives a presentation of the cubical set model in nominal sets.
+ cubical sets](http://arxiv.org/abs/1401.7807), Andrew Pitts - This
+ gives a presentation of the cubical set model in nominal sets.
* [Remark on singleton
- types](http://www.cse.chalmers.se/~coquand/singl.pdf), Th. Coquand.
+ types](http://www.cse.chalmers.se/~coquand/singl.pdf), Thierry
+ Coquand.
* [Note on Kripke
- model](http://www.cse.chalmers.se/~coquand/countermodel.pdf), M. Bezem
- and Th. Coquand.
+ model](http://www.cse.chalmers.se/~coquand/countermodel.pdf), Marc
+ Bezem and Thierry Coquand.
Authors