module collection where
+import prelude
+import equiv
+import univalence
import sigma
import pi
-import testContr
+-- import testContr
-propIsContr (A:U) (z0 z1:isContr A) : Id (isContr A) z0 z1 =
+propIsContr (A:U) (z0 z1 : isContr A) : Id (isContr A) z0 z1 =
<j>(p0 a1@j,
\ (x:A) ->
<i>comp (<_>A) (lem1 x@i@j) [ (i=0) -> <k>p0 a1@j, (i=1) -> <k>p0 x@(j\/k),
= substInv U set (Id (equiv A B) t u) (Id (A -> B) t.1 u.1) (lem3 A B t u) (groupoidFun A B gB t.1 u.1)
lem6 (A B : U) (sB : set B) : set (Id U A B) =
- substInv U set (Id U A B) (equiv A B) (corrUniv B A) (lem4 A B sB)
+ substInv U set (Id U A B) (equiv A B) (corrUniv A B ) (lem4 A B sB)
-- the collection of all sets
module groupoidTrunc where
import prelude
+import equiv
+
data gTrunc (A : U)
= inc (a : A)
module hnat where
import nat
+import equiv
-- Non-standard nat:
hdata hnat = nzero
module int where\r
\r
+import equiv\r
import nat\r
import discor\r
\r
testOneZ : Z = transport sucIdZ zeroZ\r
testNOneZ : Z = transport (<i> sucIdZ @ - i) zeroZ\r
\r
-ZSet : set Z = hedberg Z (orDisc nat nat natDec natDec)
\ No newline at end of file
+ZSet : set Z = hedberg Z (orDisc nat nat natDec natDec)\r
module interval where
import gradLemma
+import equiv
+
data I = zero | one | seg <i> [(i = 0) -> zero, (i = 1) -> one]
module pi where
import prelude
+import equiv
-----------------------------------
-- Example: Equality in pi types --
module prop where
import prelude
+import equiv
lemProp (A B : U) (f : A -> B) (g : B -> A)
(s : (y:B) -> Id B (f (g y)) y)
module sigma where
import prelude
+import equiv
-- application of this fact