(\(p : Path U A B) -> <i> pathToIdToPath U A B p @ - i)
(\(p : Id U A B) -> <i> idToPathToId U A B p @ - i)
--- One version of univalence for Id
+-- A few different versions of univalence for Id:
IdUnivalence1 (A B : U) : Path U (Id U A B) (equiv A B) =
compPath U (Id U A B) (Path U A B) (equiv A B) (PathIdPath A B) (corrUniv A B)
--- TODO: prove the following:
+IdUnivalence2 (A B : U) : equiv (Id U A B) (equiv A B) =
+ transEquiv' (equiv A B) (Id U A B) (IdUnivalence1 A B)
--- equivIdEquiv (A B : U) : equiv (Id U A B) (equiv A B) = undefined
-
--- IdUnivalence2 (A B : U) : Id U (Id U A B) (equiv A B) = undefined
+IdUnivalence3 (A B : U) : Id U (Id U A B) (equiv A B) =
+ pathToId U (Id U A B) (equiv A B) (IdUnivalence1 A B)
+-- TODO: redefine equiv using Id?
--------------------------------------------------------------------------------
-- Some tests