lemBase (y:S1) : Id S1 (mult base (mult base y)) y =
compId S1 (mult base (mult base y)) (mult base y) y (idL (mult base y)) (idL y)
-{-
-corrInv (y:S1) : (x : S1) -> Id S1 (mult x (mult (invS x) y)) y = split
- base -> lemBase y
- loop @ i -> rem
- where rem : Id S1 (mult (loop {S1} @ i) (mult (loop {S1} @ -i) y)) y =
- transport (<j>Id S1 (mult (loop {S1} @ i/\j) (mult (loop {S1} @ -(i/\j)) y)) y) (lemBase y)
--}
-
corrInv (x y : S1) : Id S1 (mult x (mult (invS x) y)) y =
compId S1 (mult x (mult (invS x) y)) (mult (mult x (invS x)) y) y rem1 rem
where rem1 : Id S1 (mult x (mult (invS x) y)) (mult (mult x (invS x)) y) = multAssoc x (invS x) y
eqS1 (x:S1) : Id U S1 S1 = isoId S1 S1 (mult x) (mult (invS x)) (corrInv x) (corrInv1 x)
--- we deduce the following fibration
-
-fibS1 (x:S1) : S1 -> U = split
- base -> S1
- loop @ i -> (eqS1 x) @ i