neg n -> rem n
where rem : (n : nat) -> Id int (fromZ (toZ (neg n))) (neg n) = split
zero -> zeroP'
- suc n -> refl int (neg (suc n))
- zeroP @ i -> <j> zeroP' @ i /\ j
+ suc m -> ? -- refl int (neg (suc n))
+ zeroP @ i -> ? -- <j> zeroP' @ i /\ j
isoIntZ : Id U Z int = isoId Z int fromZ toZ fromZK toZK
\r
co (x: sone) : sone = circleToS1 (s1ToCircle x)\r
\r
-lemSquare (A:U) (a b : A) (m0 m1 : Id A a b) : \r
- Square A a a (compId A a b a m0 (inv A a b m1)) a b m0 (refl A a) m1 = \r
+lemSquare (A:U) (a b : A) (m0 m1 : Id A a b) :\r
+ Square A a a (compId A a b a m0 (inv A a b m1)) a b m0 (refl A a) m1 =\r
<j i> comp A (m0 @ j) [(j=1) -> <k> m1 @ (i \/ -k)\r
,(i=0) -> <k> comp A (m0 @ j) [(j=1) -> <l> m1 @ (-k \/ -l)]]\r
\r
\r
s1EqCircle : Id U sone S1 = isoId sone S1 s1ToCircle circleToS1 ocid coid\r
\r
-s1EqS1 : Id U S1 S1 = compId U S1 sone S1 (inv U sone S1 s1EqCircle) s1EqCircle \r
+s1EqS1 : Id U S1 S1 = compId U S1 sone S1 (inv U sone S1 s1EqCircle) s1EqCircle\r
\r
-- pointed sets\r
\r
rem1 : G (sone,north) = subst ptU G (S1,base) (sone,north) (<i> s1PtCircle @ -i) rem\r
\r
s1ToCId (p: Id sone north north) : Id S1 base base\r
- = <i> transport s1EqCircle (p @ i) \r
+ = <i> transport s1EqCircle (p @ i)\r
\r
s1ToCIdInv (p : Id S1 base base) : Id sone north north\r
= <i> (transport (<j> s1EqCircle @(-j)) (p @ i))\r
test0S : Z = windingS (refl sone north)\r
\r
test2S : Z = windingS loop2S\r
-\r