Fun. Exp1 ::= Exp2 "->" Exp1 ;
Pi. Exp1 ::= [PTele] "->" Exp1 ;
Sigma. Exp1 ::= [PTele] "*" Exp1 ;
+AppFormula. Exp2 ::= Exp2 "@" Formula ;
App. Exp2 ::= Exp2 Exp3 ;
IdP. Exp3 ::= "IdP" Exp4 Exp4 Exp4 ;
Trans. Exp3 ::= "transport" Exp4 Exp4 ;
ElimComp. Exp3 ::= "elimComp" Exp4 System Exp4 ;
Fst. Exp4 ::= Exp4 ".1" ;
Snd. Exp4 ::= Exp4 ".2" ;
-AppFormula. Exp5 ::= Exp5 "@" Formula ;
Pair. Exp5 ::= "(" Exp "," [Exp] ")" ;
Var. Exp5 ::= AIdent ;
PCon. Exp5 ::= AIdent "{" Exp "}" ; -- c{T A B} x1 x2 @ phi
mLoop : (x : S1) -> Id S1 x x = split
base -> loop1
- loop @ i -> (constSquare S1 base loop1) @ i
+ loop @ i -> constSquare S1 base loop1 @ i
mult (x : S1) : S1 -> S1 = split
base -> x
- loop @ i -> (mLoop x) @ i
+ loop @ i -> mLoop x @ i
square (x : S1) : S1 = mult x x
foo : S1 = base
-loop' : Id S1 base base = <i> (loop {S1}) @ i
+loop' : Id S1 base base = <i> loop {S1} @ i
-- new
, (j=0) -> a
, (j=1) -> b]
--- TODO: fix parsing: no parentheses should be necessary
-
setTruncSet (A : U) : set (setTrunc A) =
\(a b : setTrunc A) (p q : Id (setTrunc A) a b) ->
- <i j> (setTr {setTrunc A} a b p q) @ i @ j
+ <i j> setTr {setTrunc A} a b p q @ i @ j
setTruncRec (A : U)
s1ToCircle : sone -> S1 = split\r
north -> base\r
south -> base\r
- merid b @ i -> (path b) @ i\r
+ merid b @ i -> path b @ i\r
\r
-m0 : Id sone north south = <i> (merid{sone} false) @ i\r
+m0 : Id sone north south = <i> merid{sone} false @ i\r
\r
-m1 : Id sone north south = <i> (merid{sone} true) @ i\r
+m1 : Id sone north south = <i> merid{sone} true @ i\r
\r
invm1 : Id sone south north = inv sone north south m1\r
\r
circleToS1 : S1 -> sone = split\r
base -> north\r
- loop @ i -> (compId sone north south north m0 invm1) @ i\r
+ loop @ i -> compId sone north south north m0 invm1 @ i\r
\r
-merid1 (b:bool) : Id sone north south = <i>(merid{sone} b)@ i\r
+merid1 (b:bool) : Id sone north south = <i> merid{sone} b @ i\r
\r
oc (x:S1) : S1 = s1ToCircle (circleToS1 x)\r
\r
coid : (x : sone) -> Id sone (co x) x = split\r
north -> refl sone north\r
south -> m1\r
- merid b @ i -> (ind b) @ i\r
+ merid b @ i -> ind b @ i\r
where\r
F (x:sone) : U = Id sone (co x) x\r
\r
ptU : U = (X : U) * X\r
\r
lemPt (A :U) (B:U) (p:Id U A B) (a:A) : Id ptU (A,a) (B,transport p a) =\r
- <i> (p @ i,transport (<j>p @ (i/\j)) a)\r
+ <i> (p @ i,transport (<j> p @ (i/\j)) a)\r
\r
Omega (X:ptU) : ptU = (Id X.1 X.2 X.2,refl X.1 X.2)\r
\r
= <i> transport s1EqCircle (p @ i)\r
\r
s1ToCIdInv (p : Id S1 base base) : Id sone north north\r
- = <i> (transport (<j> s1EqCircle @(-j)) (p @ i))\r
+ = <i> (transport (<j> s1EqCircle @ -j) (p @ i))\r
\r
loop1S : Id sone north north = s1ToCIdInv loop1\r
\r