equivLemma A B (transEquiv A B (ua A B e)) e (uabeta A B e)
--- So (B:U) x Equiv A B is a retract of (B:U) x Path U A B
+-- So (B:U) x equiv A B is a retract of (B:U) x Path U A B
opaque uaret
f1 (A : U) (p : (B : U) * equiv A B) : ((B : U) * Path U A B) = (p.1,ua A p.1 p.2)
-- From here on it is just the proof of the standard formulation of
--- univalence, taken from examples/univalence.ctt
+-- univalence from the above formulation, taken from examples/univalence.ctt
sigIsContr (A : U) (B : A -> U) (u : isContr A)
(q : (x : A) -> isContr (B x)) : isContr ((x:A) * B x) = ((a,g a),r)