negF2 : F2 -> F2 = subst U (\(X : U) -> (X -> X)) bool F2 boolEqF2 neg
+
+lemTest (A : U) : (B : U) (p : Id U A B) (a : A) -> IdP p a (transport p a) =
+ J U A (\(B : U) (p : Id U A B) -> (a : A) -> IdP p a (transport p a)) (refl A)
+
+
test : IdP boolEqF2 true one = <i> glueElem one [ (i = 0) -> true ]
test1 : IdP boolEqF2 true one = lemTest bool F2 boolEqF2 true
(s : (y:B) -> Id B (f (g y)) y)
(t : (x:A) -> Id A (g (f x)) x) : Id U A B =
<i> glue B [ (i = 0) -> (A,(f,(g,(s,t)))) ]
-
-lemTest (A : U) : (B : U) (p : Id U A B) (a : A) -> IdP p a (transport p a) =
- J U A (\(B : U) (p : Id U A B) -> (a : A) -> IdP p a (transport p a)) rem
- where rem (a : A) : Id A a a = refl A a
\ No newline at end of file