module ex1 where
-import prelude
+import circle
constant (A B:U) (f:A->B) : U = (x y:A) -> Id B (f x) (f y)
-data S (X:U) = inc (x:X) | path (x y:X) @ (inc x) ~ (inc y)
+data S (X:U) = inc (x:X) | freePath (x y:X) @ (inc x) ~ (inc y)
phi (X A:U) (fc : (f:X->A) * constant X A f) : S X -> A = split
inc x -> fc.1 x
- path x y @ i -> (fc.2 x y) @ i
+ freePath x y @ i -> (fc.2 x y) @ i
psi (X A:U) (f:S X -> A) : (f:X->A) * constant X A f =
- (\ (x:X) -> f (inc x), \ (x y:X) -> <i>(f (path{S X} x y)@i))
+ (\ (x:X) -> f (inc x), \ (x y:X) -> <i>(f (freePath{S X} x y)@i))
lem (X A:U) (f : S X -> A) : Id (S X -> A) (phi X A (psi X A f)) f =
<i> \ (x:S X) -> (rem x) @ i
where rem : (u : S X) -> Id A (phi X A (psi X A f) u) (f u) = split
inc x -> refl A (f (inc x))
- path x y @ i -> <j>f (path{S X} x y)@ i
+ freePath x y @ i -> <j>f (freePath{S X} x y)@ i
thm (X A:U) : Id U ((f:X->A) * constant X A f) (S X -> A) = isoId T0 T1 f g t s
where T0 : U = (f:X->A) * constant X A f
s (x:T0) : Id T0 (g (f x)) x = refl T0 x
t : (y:T1) -> Id T1 (f (g y)) y = lem X A
+-- a special case
+
+aLoop (A:U) : U = (a:A) * Id A a a
+
+phi (A:U) (al : aLoop A) : S1 -> A = split
+ base -> al.1
+ loop @ i -> (al.2)@ i
+
+psi (A:U) (f:S1 -> A) : aLoop A = (f base,<i>f (loop1@i))
+
+rem (A:U) (f : S1 -> A) : (u : S1) -> Id A (phi A (psi A f) u) (f u) = split
+ base -> refl A (f base)
+ loop @ i -> <j>f (loop1@i)
+
+lem (A:U) (f : S1 -> A) : Id (S1 -> A) (phi A (psi A f)) f =
+ <i> \ (x:S1) -> (rem A f x) @ i
+
+thm (A:U) : Id U (aLoop A) (S1 -> A) = isoId T0 T1 f g t s
+ where T0 : U = aLoop A
+ T1 : U = S1 -> A
+ f : T0 -> T1 = phi A
+ g : T1 -> T0 = psi A
+ s (x:T0) : Id T0 (g (f x)) x = refl T0 x
+ t : (y:T1) -> Id T1 (f (g y)) y = lem A
+